
Light and information

D. Gabor – Imperial college, London

1972

This article is the substance of a Ritchie lecture,
delivered by the author on March 2, 1951 at the
University of Edinburgh. The contents of the lec-
ture became known to a wider wider audience through
the distribution of a limited number of mimeogaphed
notes, which have since become widely quoted in the
literature. This wish has been often expressed that a
permanent record of the lecture should be made gen-
erally available. We are glad to meet this wish.

1 Introduction

Light is our most powerful source of information on
the physical world. Anthropologists have often em-
phasized that the privileged position of Man is due
as much to his exceptionally perfect eye, as to his
large brain. I was much impressed by a remark of
Aldous Huxley, that we owe our civilization largely
to the fact that vision is an objective sense. An ani-
mal with an olfactory sense or with hearing, however
well developed, could never have created science. A
smell is either good or bad, and even hearing is never
entirely neutral; music can convey emotions with an
immediateness of which the sober visual arts are inca-
pable. No wonder that the very word “objective” has
been appropriated by optics. But on the other hand
it is probably the peculiar character of vision which
is chiefly responsible for one of the most deep-rooted
of scientific prejudices; that the world can be divided
into an outer world and into an “objective” observer,
who observes“what there is”, without influencing the
phenomena in the slightest.

In this lecture an attempt will be made to discuss
optics from the point of view of information theory.
But before doing this, I must start with a disclaimer.

I do not want to give the impression that we have
now a valuable new epistemological principle, which
we want to hand over to the physicist. Nothing irri-
tates the physicist more than when the philosopher
tries to look over his shoulder and to give him advice,
and this is hardly surprising in view of the past record
of philosophers, from Aristotle to Hegel, to mention
only those who are safely dead. Information theory
does not originate from philosophers, but also from
a group of outsiders; from mathematically interested
electrical engineers, and mathematicians interested
in communications. They may not be quite as sus-
pect of conceit as philosophers, but it will be as well
to point out from the start that the point of view
of information theory was never quite absent from
physics, and has been growing stronger and stronger
in modern physics long before information theory be-
came fashionable. Again and again in the course of
this lecture I shall be able to point out the work of
physicists in this direction. But having said this, I
may be allowed also to say that the points of view
of information theory, consequently applied, may yet
prove of appreciable heuristic value to physics.

What then are the points of view of information
theory? I want to say that I am stating my own views,
not necessarily shared by others who are working in
this field. There are two steps in the approach. In
the first step we specify the degrees of freedom of the
phenomenon, in such a way that we operate always
with discrete degrees, and in all practical cases with
a finite number of them. This, in MacKay’s useful
terminology specifies the structural aspects of infor-
mation.

Once we have found the right coordinates, the sec-
ond step is to specify the phenomenon by attaching
a measure to each coordinate. But it is essential that
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we must never expect an exact measure. we must
take account of the fact that in every physical mea-
surement there is an unavoidable amount of uncer-
tainty, fluctuation or “noise”, so that the best we can
do is to specify the measure between certain limits,
with a certain probability. A convenient way of doing
this is to lay down a certain“scale of distinguishable
steps”, also called a “proper scale”. This means that
we proceed along the scale in steps roughly equal to
the uncertainty. Of course some sort of convention
must be made regarding what one considers as dis-
tinguishable, e.g. by agreeing that if one says that
the value is in a certain interval, this means that on
repetition of the experiment one would find this inter-
val say in 50% of the cases. Once such a convention
is made – and practically it is easy to fix one in most
cases – the measurement is expressed by an integer,
by the order of the interval, counted from the lowest
step.

Thus in information theory every phenomenon is
described by a finite number of integers. There is no
continuity, except in the probabilities. There is no
need to emphasize how close this view comes to the
method of quantum physics, and the authors of in-
formation theory do not wish to plead ignorance of
this fact. On the contrary this was always empha-
sized, especially in a paper by MacKay, and those
of the author. The “structural” information, i.e.
the free coordinates of the phenomenon to be stud-
ied, has been also called the “a priori” part of it.
What is meant by this can perhaps be illustrated
by Eddington’s famous “parable of the fishing net”
(Eddington [1939], pp. 16, 62). – If an ichthy-
ologist casts a net with meshes two inches wide for
exploring the life on the ocean, he must not be sur-
prised if he finds that “no sea-creature is less than
two inches long”. Similarly, if one tries to explore
atmospherics by means of a radio set with a band-
width of a thousand cycles, there is no need to look
out for surges with a “base” of less than a millisec-
ond. But one must be very careful with the word “a
priori”. We do not always know our instrument as
well as the ichthyologist ought to know his net, and
the specification of the free coordinates of the instru-
ment requires physical knowledge, and not only the
knowledge of formal logic, as may be suggested by

the word “a priori”. Later in this lecture there will
be opportunity for showing that an important part
of our knowledge of light is in fact embodied in the
system of “free coordinates”, suitable for its descrip-
tion.

The handling of the metrical information (some-
times called a posteriori), in information theory has
a distinctive feature which may be briefly mentioned.
The number which appears as the result of the mea-
surement is often considered as a selection from a
number of possible values. Historically this may be
attributed to the fact that the first authors in the field
which became later known as “communication the-
ory”, Nyquist, Kupfmuller, Hartley, were interested
in telegraphy, where the signals are in fact selections
from a certain discrete set. This view may appear a
little strange to the physicist, but he may remember
that once he has set his galvanometer, every possible
reading is a selection from the distinguishable marks
on his scale. At any rate if we include the reading
“off the scale”. Nor is this concept such a stranger to
physics as it might appear at first sight, as we shall
see later when we come to the discussion of light,
information and thermodynamics.

2 Geometrical Optics

After a few, rather unsuccessful attempts of the an-
cients, the laws of light were first formulated round
the turn of the 16th century in the form of geomet-
rical optics. This is built on the concept of a “ray
of light” which for a long time was naively identified
with a geometrical line (sometimes a curve.)

From the point of view of information theory this is
a completely unsatisfactory departure. Every point
of an object plane sends out a double infinity of rays,
and if we had a perfect lens, which is no impossi-
bility in geometrical optics, we can unite this whole
pencil of rays in one point of an image plane, and
study the object plane point-for-point. But there is
no need for a perfect lens. Let us take instead a
camera obscura, with a “point-hole”, and we have
automatically perfect representation. The number of
“free coordinates” is infinite in this naive views; we
have not only an infinity of points or rays, but it is
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transfinite infinity.
It is evident how strongly these naive views, and

the crude experiments on which they are based are
responsible for our belief in a continuous geometry.
It was, of course, a very sound instinct which led
Snell, Descartes and others to base the infant theory
of light on what appeared to them the safe founda-
tion of euclidean geometry. To this day we cannot do
without the concept of a continuous space, though
it is no longer euclidean. Attempts to eliminate it
appeared to Einstein as promising as “breathing in
a vacuum”. Some day it may be possible to discard
it, but the time has not come yet, and we shall have
to use continuous space as a background, though it
will soon become evident that what we can physi-
cally distinguish in it are not points, but at the best
small, diffuse patches. Yet, geometrical optics gives
at least a hint which way to look for a basis in ap-
plying information theory to light. Information is
something which is propagated from the object to
the image without destruction, if the imaging system
is a perfect one; thus we must look for the invari-
ants of the imaging process. Moreover we must look
for a geometrical invariant for the structural speci-
fications; one which exists as soon as we set up the
image plane, the object plane and the lens system,
irrespective of what object we put in the plane, and
how we illuminate it.

Figure 1: The Smith-Lagrange invariant in geomet-
rical optics

But there exists only one of this type; the Smith-
Lagrange invariant (Fig. 1). This is the product of
any small line element at right angles to the optic
axis with the angular divergence of the rays which
issue from any one of its points and pass through the
lens aperture. This is the same for the object as for
its image,

a
′
α

′
= a

′′
α

′′

This holds exactly true only for perfect imaging,
but – excluding certain types of lens errors – it will be
true also for less perfect ones if we restrict both the
elements, and the divergences to very small values.
We can now write conveniently

dSdΩ = inv. (1)

where dΩ is the solid angle of a very narrow cone of
rays, and dS is the projection of the area of a very
small element, viewed from the direction of the cone.
It will be seen later that this is, in fact, an important
cue.

3 Classical Wave Optics

After Snell, Descartes and Fermat the next great
progress came with Christiaan Huygens, who formu-
lated what we would call nowadays the scalar wave
theory of light. It is known that this had to be re-
placed later by the “vector theory” of Young and
Fresnel, and that their mechanical vectors had to
be reinterpreted by Maxwell as electromagnetic ones,
but these steps, important as they were, are not as
fundamental from the point of view of information
theory as Huygens’ step from rays to waves. But we
must not forget that Newton, though he opposed the
wave theory, supplied what is perhaps the most im-
portant element in it, by his celebrated experiments
in which he decomposed light into spectral colours,
and showed that these could not be further decom-
posed. This made it possible later, in the hands of
Young and of Fresnel, to associate a characteristic
length, the wavelength, with every spectral colour.
It is this characteristic length which changes the pic-
ture completely from the point of view of information
theory.

In wave optics the concept of a “ray” is not at all
elementary. Its place is taken by the simplest solu-
tion of the wave equation; the plane, monochromatic
wave. Unfortunately, like most of the simple concepts
with which we do our thinking, this turns out to be a
very remote abstraction from reality because it must
be infinite in extension. But we must retain it be-
cause of its mathematical simplicity, with much the

3



Gabor – Light and information (1972)

same reservation which we have made about geome-
try. Let us therefore consider for a start what appears
the simplest case; a plane, monochromatic wave with
wavelength λ impinging on a plane object. But in or-
der to represent such a wave mathematically we must
make another questionable assumption. Consider for
simplicity “scalar light” with amplitude u. (In the
vector theory we can instead consider any cartesian
component of the vectors involved.) This must sat-
isfy the wave equation

� u ≡
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2

)
u = 0

which expresses the fact that light propagates in all
directions with the velocity c. But if we want to
satisfy this equation, we must assume that the wave
which is periodic in space with period λ is periodic
in time with a frequency ν = c/λ. This introduces
an air of unreality into classical wave optics, because
the frequency of light has never been measured in any
optical experiment, nor the phase of this hypothetical
vibration. What we measure are always wavelengths
and relative phases, which are entirely determined by
geometry. The behaviour of light in time appears in
wave optics as an ad hoc construction, so contrived
as to account for the velocity of propagation. But we
will accept it for the present, because for long wave-
lengths, for radio waves, frequency and phase become
really measurable quantities, and the vibrations can
be followed in time by means of oscillographs. Why
frequency should be measurable for long waves but
not for short ones is a question to which classical
wave theory has evidently no answer, and which we
must leave for later.

Consider now that such a wave, whose mathemat-
ical expression is

u0 = e2πi(z/λ−νt)

falls in the z-direction on a plane object in the plane
z = 0 (Fig. 2). Immediately behind the object the
amplitude will be given by some expression of the
form

u(x, y,+0, t) = t(x, y)e2πiνt (2)

t(x, y) is the complex “amplitude transmission” of the
object. There is no need here to discuss its meaning,

and how it is related to physical properties of the ob-
ject, because in this experiment the function t(x, y) is
the object. That is to say it contains everything that
we can expect to find out about the object; in fact,
as we shall see in a moment, it contains much more,
and only a small part of it is actually observable.

The amplitude being given by eq. (2) immediately
behind the object, the problem is to calculate it for
any z. One could solve it by using the method of
Huygens and Fresnel, by superimposing the elemen-
tary spherical wavelets issuing from all surface ele-
ments of the object. But another method, connected
with the name of Fourier, but which, I believe, was
first introduced into optics by Rayleigh is far more
appropriate.

Figure 2: Propagation of light waves

One starts by decomposing the transmission func-
tion t(x, y) into its Fourier components, by the for-
mula

t(x, y) =

∫ ∫ +∞

−∞
T (ξ, η)e2πi(xξ+yη)dξdη. (3)

Each Fourier component represents a simple peri-
odic infinite “standing wave” of transmission, with
the periods 1/ξ and 1/η in the x and y direction.
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Thus the “Fourier variables” ξ and η can be inter-
preted as wave numbers in the plane z = 0. The
(complex) amplitude T (ξ, η) of these components is
called the Fourier transform of t(x, y).

By the principle of superposition (first noticed for
water waves by Leonardo da Vinci), the amplitude
at any point x, y, z can be calculated by determin-
ing separately the wave issuing from every one of the
Fourier components, and summing them. The cal-
culation – carried out in Appendix I – gives a very
simple and significant result : those Fourier compo-
nents whose period in the object plane is longer than
a wavelength will be propagated as plane waves, while
those with a shorter period will be continued as expo-
nentially damped “evanescent waves”, which means
that they will be practically damped out in a matter
of few wavelength at most.

It is intuitively clear that if the Fourier compo-
nents below a wavelength are cut out, all details of
the object (that is to say of t(x, y)) which are finer
than about half a wavelength will be cut out with
them. Thus we arrive at the first significant result
of wave theory, that light with a wavelength λ will
under no circumstances carry with it information on
detail below 1

2λ
We obtain a very clear idea of the propagation of

the remaining information if we follow the transfor-
mation of the amplitude u with increasing distance z
from the object plane in space, and simultaneously in
“Fourier space”. This is illustrated in Fig. 2, but for
simplicity only the intensity is shown, i.e. the squared
absolute value of the amplitude u, and the modulus
of its Fourier transform. The striking feature is that
while the intensity pattern changes rapidly, so that
the object soon becomes unrecognizable, the modu-
lus of the Fourier transform does not change at all.
This can be easily understood if it is remembered that
each point ξ,η the Fourier pattern corresponds to a
certain direction in space, in which the corresponding
plane wave is propagated, and this does not of course
change in free space. The phase (argument), of the
Fourier component changes with z, but here again we
have a law which is very much simpler than the one
for the phase change of u: – The phase factor of T
depends only on z, ξ and η, i.e. it is independent of
all other points in the Fourier diagram, and it can

be easily calculated, as shown in Appendix I. This is
the advantage of the method of Fourier transforms,
which does not apply to the simple case only which
we have here considered, and which is finding increas-
ing applications in instrumental optics, after having
been for many years one of the chief mathematical
tools of communication engineering.

Figure 3: Connection between Fourier variables and
angular variables

If the distance z of the screen on which we observe
the intensity is further increased, all resemblance to
the object is gradually lost, and finally the intensity
pattern becomes identical with the Fourier modulus
diagram. This is illustrated in Fig. 3. This hap-
pens at a distance so large that every plane wavelet
issuing from the object can be considered as a “ray”.
If we use a lens-between the object and the screen,
there is no need to go to infinity, we find the same
conditions very nearly realized in the rear focal plane
of the lens. This is the plane in which to place a
ray-limiting aperture, if one wants the same angu-
lar limitation for every point of the object. In this
simple case it is quite evident that we lose some fur-
ther information, because we have cut out all Fourier
components outside a certain area.

We are now in a position to answer the first ques-
tion of information theory, the question of the degree
of freedom, or of “free coordinates”’ We can reformu-
late this question in the form: –“How many in- de-
pendent variables are necessary to express as much
of the function t(x, y) as we can learn from an op-
tical image, under certain conditions of ray limita-
tion?” Consider first, for simplicity, the last example,
in which the Fourier variables were all limited to the
same region (by an aperture at a large distance), in-
dependently of the space coordinate x, y. We now
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build up the complicated beam which issues from the
object out of elementary beams, every one of which
has a non-zero Fourier transform only inside the al-
lowed region, and we try to expand t(x, y) in a series
of these. We find that we get into difficulties, be-
cause if the Fourier spectrum is sharply cut off, as
assumed, these beams will spread out at the base,
i.e. in the object plane, to infinity, hence we cannot
have, as we wished, a sharply limited object. without
going into technicalities which have been dealt with
elsewhere (Gabor [1946]) we will only mention that
there exists a correlation of the form

smallest eff. beam area x solid ang. of divergence

square of wavelength
≥ 1

(4)
and that the smallest possible value of this ratio is
achieved for the rotationally symmetrical “gaussian
elementary bean” illustrated in Fig. 4. This smallest
value is of the order unity, with any reasonable defi-
nition of the quantities which figure in the numerator
in eq. (4).

Thus we see that so long as the product of object
area and Fourier area is of the order unity or smaller,
we cannot even start to answer the question regarding
the degrees of freedom, because we cannot construct
even one elementary beam to satisfy the cut-off con-
ditions.

Figure 4: Gaussian elementary beam

The question is evidently of a statistical nature,
and can be answered with an accuracy of order 1/M
if the product of object area and Fourier area is of
the order M ; a large number. But with this qualifi-
cation we can give an answer to the question : — A
monochromatic beam of light has F degrees of free-

dom, where

F = 2×2×object area×accessible Fourier area (5)

because it takes this number of independent terms
to build up what remains of t(x, y) inside the object
area, after cutting out the Fourier components out-
side a certain area1. The first factor 2 is due to the
fact that each term has an arbitrary complex coeffi-
cient, equivalent to two real data, the other is due to
the vector nature of light. In principle light can trans-
mit two independent images, polarized at right angles
to one another. This result is essentially contained
in an important paper by Max von Laue [1914],
though not in connection with the transmission of
information by light. It may be mentioned that the
theorem has not yet been proved with a rigour which
would satisfy mathematicians, but physicists have
their own standards in these matters.

The result is illustrated in Fig. 5. The information
space has really four dimensions x, y, ξ and η but in
the simple case where the solid angle Ω is independent
of x, y three dimensions suffice. The theorem can
be evidently generalized: The degree of freedom is
2 (or 4) times the volume of the information space
available.

So far we have talked of the stationary case only,
i.e. of a steady, unchanging image. What happens if
the object is moving or changing?

Figure 5: Information space

We can give an answer immediately, by availing
ourselves of the now fairly generally known results of
communication theory. Every degree of freedom can

1Appendix II contains two examples of such series expan-
sions for the “non-redundant” representation of what is left
of t(x, y) after cutting off Fourier components. Physicists will
need no reminding of how similar that is to the procedure in
quantum mechanics, especially in Dirac’s formulation.
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be conceived as a separate and independent commu-
nication line, which has

(2)∆ν∆t

degrees of freedom in a frequency interval ∆ν, and
the time interval, (observation time) ∆t. The fac-
tor (2) in brackets is to be used if the “temporal
phase” is measurable. The author has shown in a
recent paper (Gabor [l950]) that in the case of light
this is possible only with quite extraordinary inten-
sities, combined with high spectral purity, which it
may never be possible to realize with existing light
sources. But in the region of radio waves phase is
easily measurable, and the factor 2 is justified. —
We can now write down our result for the degree of
freedom of any beam of light (which need no longer
be monochromatic or coherent2) in the general form

2 × 2 × (2)

∫ ∫ ∫ ∫ ∫ ∫
dxdydξdηdνdt, (6)

or, in terms of the cross-section dS and the solid angle
dΩ

2 × 2 × (2)

∫ ∫
dS

λ2
dΩdνdt (7)

This is evidently a significant quantity, because
dS
λ2 dΩ and dνdt are both relativistic invariants. But
the result is hardly written down before doubts arise
whether it can really stand on its own legs. We
have already seen that the bracketed factor 2 be-
comes physically real only at very high intensities.
But another question, even more elementary is sug-
gested by eqs. (6) and (7) : What happens if we do
not cut off the area or the angular variables sharply,
as we have assumed up to now, but e.g. just almost
cut out a part of the waves, by an almost black filter?
Are we still allowed to measure the information space
just as if it were fully accessible? This is a familiar
dilemma in problems of a statistical nature, to which
classical theory has no answer. The weighting factor
which is evidently necessary will have to come from
another side. But before approaching this question,
we will sharpen the dilemma, by an example which
throws into relief the logical insufficiency of the clas-
sical scheme.

2cf. Appendix III

4 The Paradox of “Observation
without Illumination”

The classical theory of light claims validity at all lev-
els of intensity, however small. This appears a harm-
less assumption. Combined with the elementary ex-
perience that in fact every observation requires a cer-
tain minimum, finite light sum, one would at first
sight conclude only that one has to wait a correspond-
ingly long time for an observation.

Figure 6: Observation “without illumination”

But it will now now be shown that if the classical
theory were true, however large the minimum energy,
we could make an observation with alight sum passing
through the object which could be made as small as
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we like.
Let us take a Zehnder-Mach interferometer, as

shown in Fig. 6, in which coherent light is divided
into two very unequal parts. Only a very small frac-
tion is directed through the branch which contains
the object; the rest is branched through the other
term, and united with the weak beam only at the re-
ceptor, which may be e.g. a photographic plate. Thus
we have divided the tight into two parts; a weak one
which carries all the information, and a strong one
which carries almost all the energy.

For simplicity let us fix our attention on one resolv-
able element of the object, say a square whose edges
are equal to the resolution limit, so that the result of
the observation is expressed by a single number; the
light sum through the image of the element during
the observation time. Let us call A0 the amplitude
in the strong, uniform background, a the amplitude
which the image-carrying beam would produce by it-
self. As the two are coherent, the resulting intensity
is

I = A2
0 + a2 + 2A0a cosφ (8)

if φ is the phase angle between the two which depends
on the optical paths and also on the phase delay in
the object. Similarly we have the relation between
the resulting and the partial light sums

S = S0 + s+ 2(S0s)
1
2 cosφ (9)

This is the sum of the large uniform background term
S0, known beforehand, the light sum s which has
penetrated through the object, and which can be as-
sumed as very small, and an interference term. This
can happen to be zero if the two amplitudes are in
quadrature, but if necessary we can repeat the exper-
iment with quarter-wave plate introduced into one
branch or the other. The absolute expectation value
of this term is

4

π
(S0s)

1
2 (10)

which means that we can amplify the effect of the
weak image carrying beam roughly in the ratio
(S0/s)

1/2. It is true that the contrast is still small, of

the order (s/S0)
1/2

, but as the background is known
and uniform, we can subtract it. Subtraction is par-
ticularly easy if electrical methods are used; one takes

the image on a television screen and suppresses the
d.c. component in the transmission. But it can be
done also with photographic plates if the grain is fine
enough to be negligible, e.g. by using the Foucault-
Toepler “schlieren” method. We are allowed to ne-
glect the grain, because however large the area and
the corresponding minimum light sum, and however
small s we can make so large enough for the prod-
uct (10) to become observable. Thus, in the limit,
we could make an observation with as small a total
illumination of the object as we like.

Instinct of course tells us that this cannot be true.
The weak point in the argument is evidently the sub-
traction of the strong but uniform background. The
argument would break down if, in increasing the in-
tensity in the background, we would, at the same
time, increase its uncontrollable fluctuations to such
an extent that in the end the interference term (10),
which indicates the object, could not be told against
the background of “noise”. But we could eliminate
the imperfections of the apparatus unless these fluc-
tuations arose from the nature of light itself.

Let us now make the reasonable assumption, that
the experiment is bound to fail if the light sum s
which has gone through the object element is smaller
than a certain minimum energy ε0, because for

s < ε0

the interference term (10), becomes smaller than the
root of the mean fluctuation square of the back-
ground, i.e.

Sos < ¯(δS0)2.

Assume that equality, i.e. possible observation is just
achieved for s = ε0, this can be written

¯δ(S0/ε0)2 = S0/ε0. (11)

S0/ε0 is a pure number, the light sum in the back-
ground in units of the minimum energy which makes
an elementary observation possible. But eq. (11) is
Poisson’s “law of rare events”. It could be exactly
accounted for by the hypothesis that monochromatic
light arrives in quanta of some size ε0 which arrive at
random, subject only to the condition that an aver-
age of S0/ε0 arrives during the observation time. No
observation can be made with less than one quantum
passing through the observed object.
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5 A Further Paradox : “A Per-
petuum Mobile of the Second
Kind”

This chapter is skipped, for it is very intricate and
not so much interesting for the discussion.
It will be translated in a further version of
this document (the interested reader can find
the original version of the present article here
http://antoine.wojdyla.fr/assets/archive/

gabor1951-original.pdf)

6 The Metrical Information in
Light Beams

We can now return to the problem of the information
content of light, which we had to leave in a rather
unsatisfactory state. Classical theory enabled us to
count the degrees of freedom, but it did not provide
a metric. In quantum theory we can count light en-
ergy: in terms of photons, which provides a natural
measure.

In classical theory there is no upper limit to field
intensities, and quantum theory, at least for the
present, retains this feature by allowing any num-
ber of photons in one cell, i.e. in any one degree of
freedom. It is interesting to consider for a moment
to what an extent we can avail ourselves in practice
of this generous theoretical permission. We consider
three powerful sources in different parts of the elec-
tromagnetic spectrum

A power generating station, 10 000 kW, 50 ± 0.01
cycles/sec puts about

1041 photons

into a single cell3.
A large magnetron, in pulsed operation on 10 cm

wavelength, 3 × 109 ± 0.5 × 106 cycles, though with
an instantaneous power only ten times smaller than
the generating station, produces

1024 photons per cell.

3see appendix V.

This is 1015 times smaller than in the first case, but
still a large enough number to make electrical engi-
neers indifferent to quantum theory. But a powerful
high pressure mercury lamp, emitting 1 watt per cm3

arc area in the form of the green line λ = 5461 ± 10
Angstroms achieves less than

10−3 photons per cell,

i.e. the best it can do is about one photon for a
thousand cells! Hence light optics, when it comes
to metrical problems is entirely outside the classical
region. The classical theory has given us the formula

2 × 2 × (2)

∫ ∫
dS

λ2
dΩdνdt (12)

for the degrees of freedom in an arbitrary light beam,
called also the “number of logons”. We can now con-
sider every logon separately from the point of view
of information capacity. It is convenient to define
this as the logarithm of the number of distinguish-
able steps s(n) if 1, 2, ... photons are packed into
it, up to a level n. This problem was the subject of
a recent investigation by the author [1950] where it
was found that the number of distinguishable steps
is, approximately,

s(n) = 2

(
n

1 + 2nT

)2

and that the factor (2) in eq. (7) must be sup-
pressed4. nT is here the number of thermal photons

4It can be directly verified that this is the number of dis-
tinguishable energy levels, by using an extension of Einstein’s
law for the energy fluctuations in a Hohlraum. One might ask
whether, at high quantum levels, this is the same as the number
of distinguishable states, because classical theory associates
two quantities with every level: an amplitude and a phase.
These are also considered as observable in the quantum theory
of radiation, but only to a certain accuracy, determined by the
uncertainty relation. Born and Rosenfeld [1933, 1950] have
proved that these measurements can be indeed carried out, if
no restriction is imposed on the particles used in the imaginary
experiments, i.e. if one admits test bodies composed of nuclear
matter, or even denser. On the other hand, I have found l.c.
that if one uses electrons, and the type of electronic amplifier
which appears the most promising for this purpose, the total
information contained in the best possible measurements of
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at the temperature T at which the observations are
made, which is, by Planck’s law

nT = 1/(ehν/kT − 1) (13)

Now consider the case of a beam with many de-
grees of freedom, as given by (7), the beam which is
issuing from an object under a microscope. We define
the information capacity again as the logarithm of the
number of distinguishable states. In order to calculate
this by combining the number si(ni) for the different
degrees of freedom i we must have some condition
for the ni the photons which may appear in i. We
obtain such a condition in the simplest and most nat-
ural form if we separate the “time cell”, ∆ν∆t from
the integrand, and put it equal to unity. In this case
all elementary beams contained in eq. (7) are nec-
essarily coherent. We now imagine that the object
has been illuminated with N photons, in the same
unit time cell, which means of course “coherent illu-
mination”. Thus a total maximum of N photons can
appear in the beam issuing from the object, this will
be the case if the object is not absorbing but has only
“phase contrast”. The problem is not clearly given;
in how many ways can we distribute N photons over
F degrees of freedom, and what is the total number
of distinguishable patterns, formed by combinations
of distinguishable steps? The quantity defined in this
way is very close to, though not quite identical with
Max Planck’s [1924] definition of the entropy of
a quantized system as k times the logarithm of the
“probability” P, which is defined as the number of
ways in which a given energy can be distributed over
the states. The difference is only that we have re-
placed “states” by “distinguishable states”.

The calculation, carried out in Appendix VI, gives
the asymptotic formula, valid for large N and F

logP = 1
2F log

2πeN

F (1 + 2nT )
(14)

for the maximum information capacity in a beam
with F degrees of freedom and containing N photons.

amplitude and phase will be, at most, equal to total number
of distinguishable energy levels, i.e. to s(n). The reason for
this remarkable divergence from the “ideal” experiments is the
shot effect in electron beams. If one assumed that, at least for
very high n, eq. (12) has to be replaced by a linear law, this
would merely restore the factor (2) which we have suppressed.

This formula still has the weakness that it gives
equal weight to all degrees of freedom. What hap-
pens if we do not cut out some of the degrees but
weaken them by absorbing screens? These screens
are a part of our experimental set-up, they are part
of our a priori information. We can answer the ques-
tion immediately by associating a transmission coef-
ficient τi with the i-th degree of freedom, which is a
real, positive number, smaller than or at most equal
to unity. Eq. (14) now changes into

logP = 1
2

F∑
i=1

log
2πeNτi

F (1 + 2nT )
(15)

This formula at last answers the objections to the
classical theory; the degrees of freedom are properly
weighted. It may be noted that the formula is an
asymptotic one, it must not be extended to τi so small
that an added degree of freedom might appear to
make a negative contribution, which happens if the
argument of the logarithm falls below unity, i.e. we
must cut off at

τi
N

F
= n̄iτi >=

1

2πe
(1 + 2nT ) (16)

For zero thermal noise, nT = 0 this limit is about 17
times smaller than that given by MacKay’s intuitive
rule: “Adding a degree of freedom is useless if it will
contain in the mean less than about ’one metron per
logon’ ”. The reason for this appreciable discrepancy
is that if the logon is one of many, and a large energy
is distributed over them, it can still make a useful
contribution in the cases where it receives an energy
above the average, in other words by making use of
the fluctuations.

It may be pointed out that the entropies (14) and
(15) which have a very close relation with what goes
under this name in statistical mechanics, are not to
be identified with Shannon’s “entropy, or measure of
information in communication theory”. The relations
between them are discussed in Appendix VI.

7 Conclusion

This, I believe, does not by any means exhaust what
information theory can give to the physics of light.
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I have mentioned the unavoidable increase of disor-
der which every observation must create, but I could
not go into the question of the unavoidable disor-
der which an observation creates in the object itself.
This question was first raised by Bohr and by Heisen-
berg, and most important further developments are
due to L. de Broglie [1947]. It is a problem of the
greatest interest to those who, like the author, are
engaged to extend the limits of microscopic vision.
I hope to have shown that information theory is of
some heuristic use in physics, by asking the right sort
of questions. But even if this were questioned, an-
other advantage is, I believe, evident beyond doubt.
This is that it prepares the mind for quantum theory,
whose strange methods are so difficult to assimilate
for those who have been too long engaged in classical
physics. As we must now give up all hope of ever
understanding the physical world on classical lines,
it is gratifying that in information theory we appear
to have the right tool for introducing the quantum
point of view into classical physics.
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