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Abstract

An algorithm is presented for the rapid solution of the
phase of the complete wave function whose intensity
in the diffraction and imaging planes of an imaging
system are known. A proof is given showing that
a defined error between the estimated function and
the correct function must decrease as the algorithm
iterates. The problem of uniqueness is discussed and
results are presented demonstrating the power of the
method.

Inhalt

Ein praktischer Algorithmus zur Berechnung der
Phase aus den Intensitaten in Beugungs- und
Bildebene. Ein Algorithmus zur schnellen Losung
der Aufgabe wird mitgeteilt. Wie eine Probe zeigt,
nimmt eine definierte Abweichung zwischen der er-
rechneten und der wirkliohen Funktion ab, wenn der
Algorithmus iterativ angewendet wird. Das Problem
der Eindeutigkeit wird diskutiert. Ergebnisse demon-
strieren die Leistungafahigkeit der Methode.

In 1948, Gabor [1948] proposed an experimental
method for determining the phase function across
a wave front. Basically the method involved the
addition of a reference wave to the wave of inter-
est in the recording plane. The resulting hologram
recorded was a series of intensity fringes which con-
tained enough information to reconstruct the com-

plete wave function of interest. However, in many
real situations the method has been cumbersome and
impractical to employ. It is interesting that Gabor
originally proposed the method in connection with
electron microscopy and that even now it has not
been used profitably in that field.

In subsequent years, methods were proposed for in-
ferring the complete wave function in imaging exper-
iments from intensity recordings which did not em-
ploy reference waves (see for example Hoppe [1970],
Schiske [1968], Erickson & Klug [1970]). These
methods have involved linear approximations and
hence have had validity only in the limit of small
phase and/or amplitude deviations across the wave
front of interest. For the most part, they have also
suffered from an excess of computation and have not
gained wide acceptance.

Gerchberg & Saxton [1971] recently proposed
that in many imaging experiments, intensity record-
ings of wave fronts can be made conveniently in both
the imaging and diffraction planes. Sets of quadratic
equations were developed which defined the phase
function across a wave in terms of its intensity in the
image and diffraction planes. This method of anal-
ysis was not limited to small phase deviations, but
again it required a large amount of computation.

In this paper we put forward a rapid computational
method for determining the complete wave function
(amplitudes and phases) from intensity recordings in
the image and diffraction planes. The method de-
pends on there being a Fourier Transform relation
between the waves in these two planes and hence
constrains the degree of temporal and/or spatial co-
herency of the wave. However, without a required
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degree of coherency in the experimental situation, it
would be profitless to solve for a phase function any-
way. The method should prove to be generally useful
in electron microscopy, and under certain conditions
even in ordinary light photography. It is also felt
that it may have exciting implications for crystallog-
raphy where only the X-ray diffraction pattern may
be measured. Thus, if one has a crystal which may
be reasonably inferred to be a phase object to X-ray
illumination, its image would be contrastless and this
bit of information plus the X-ray diffraction pattern
would be sufficient to solve the “phase problem”. So-
phisticated methods for phase determination such as
heavy atom replacement could be replaced or at least
supplemented by the method to be described here.

The algorithm

The basic algorithm is an iterative procedure which
is shown schematically as Fig. 1. The input data to
the algorithm are the amplitudes of the sampled im-
age and diffraction plane intensity pictures measured.
The amplitudes are proportional to the square roots
of the measured intensities. The two sets of data
are accessed once per complete iteration and hence
require computer storage.

To begin, a random number generator is used to
generate an array of random numbers between π
and −π which serve as the initial estimate of the
phases corresponding to the sampled image ampli-
tudes. These then are multiplied by the respective
sampled image amplitudes and the Fourier Transform
of this synthesized complex discrete function is done
by means of the Fast Fourier Transform (FFT) al-
gorithm of Cooley & Tukey [1965]. The phases
of the discrete complex function resulting from this
transformation are calculated and combined with the
corresponding sampled diffraction plane amplitude
function. This function is then Fourier Transformed,
the phases of the sample points computed and com-
bined with the sampled image amplitude function to
form a new estimate of the complex sampled image
plane function and the process is repeated.

In what follows, we will discuss the problems of
sampling and uniqueness and we will show by a sim-

ple proof that the squared error between the am-
plitudes of the discrete functions generated by the
Fourier Transform operation and the discrete set of
amplitudes derived from the measured intensities in
the corresponding image or diffraction plane must de-
crease or at worst remain constant with each iter-
ation. We will also display some pertinent results
achieved on modeled problems. However, at this
point some general remarks about the algorithm are
in order.

To start the algorithm, we use a random number
generator to arrive at a set of phase angles from a uni-
form distribution density between π and −π. This is
not necessary in every case and indeed there is ev-
ery reason to suppose that an educated guess at the
correct phase distribution would lessen the compu-
tation time required for the process to achieve an
acceptable squared error. However, one initial phase
distribution which will cause the algorithm to fail,
is to have all phases equal to a constant when the
intensity pattern in both the image and diffraction
plane is centro-symmetric. This is because the phase
distribution will not change under Fourier Transfor-
mation in this case. If one studies the algorithm as
it is shown in Fig. 1, it may be realized that basi-
cally the mechanism relies on the fact that a change
in the amplitude distribution alone in one domain
of the Fourier Transform will result in changing both
the amplitude and phase distributions in the opposite
domain.

Figure 1: Schematic drawing of phase determining
algorithm

The fact that the algorithm is rapid computation-
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ally rests on using the Fast Fourier Transform (FFT)
algorithm of Cooley and Tukey to do the transforma-
tions. This algorithm has reduced the time required
to compute finite Fourier transforms by the fraction
(log2N)/N , where N is the number of points under-
going transformation. To give some idea of the time
required to solve the phase problem on a large mod-
ern digital computer (ICL-ATLAS 2), we have been
able to solve for the phase of a picture on a 32 by 32
grid (1024 points) in under 80 seconds. Thirty seven
Fourier transforms were required during this time to
reduce the squared error from 73.0 to 0.01.

The computer storage required depends of course
on the density of points necessary for adequate sam-
pling of the picture. In the example just given, 2048
words of storage were needed, to store the function
generated by the FFT block (see Fig. 1) because the
numbers are complex. Another 2048 words were re-
quired to store the reference amplitudes in the image
and diffraction planes. Therefore, the total required
storage was 4096 words.

The Uniqueness Problem

The information that is used to solve the phase prob-
lem is the measured intensity distribution in both
the image and diffraction planes of the image form-
ing system. But to start, it is clear that the solution
on this basis will not be unique. By adding a constant
but arbitrary phase to any function whose intensity
in the image and diffraction planes is the same as
the measured intensities, we generate a new function
whose intensities in both planes will also be the same
as those which were measured. Thus only relative
phases of the solution functions are meaningful. An-
other case of inherent ambiguity occurs when both
intensity distributions (diffraction and image planes)
are centro-symmetric. The complex conjugate func-
tion to any solution found in this case will also be a
possible solution. There may be more inherent am-
biguities but thus far these are the only two that we
have encountered in the trials we have completed. In
most applications, these ambiguities are tolerable.

Proof that the Algorithm Error
Must Decrease

We define the squared error as the sum of the squared
differences between the amplitudes of points in either
the image or diffraction plane (based on intensity
measurements) and the amplitudes of those points
calculated by the FFT in our algorithm (see Fig. 1).
When the squared error is zero, we have found the
correct phases of the points in both planes and we
have a solution to the phase problem. Referring to
Fig. 1, the energy (defined as the sum of the squared
amplitudes of the finite discrete function) of the func-
tion which undergoes transformation is the same for
either image or diffraction plane data. This is a con-
sequence of Parseval’s theorem and the fact that the
image function is the Fourier Transform of the diffrac-
tion plane function. Also by Parseval’s theorem, the
energies of the two functions immediately on either
side of the FFT block in Fig. 1 are equal. Now con-
sider the operation of the algorithm at two sample
points, one from the diffraction plane and one from
the image plane. The situation is shown in Fig. 2.
The reference amplitudes of the two points, based
on the measured data are t1 and t2 The FFT of the
diffraction plane function estimate (immediately af-
ter the FFT block in Fig. 1) yields the vector ĝ1 at
the image plane point. The algorithm corrects this
vector in amplitude but retains its phase by adding
the vector ĉ1 to ĝ1 to yield ĥ1 the new image point
estimate. All points in the image plane are similarly
corrected and the function is transformed to yield ĥ2
in the diffraction plane. Fig. 2b shows an arbitrary
point in the diffraction plane. The ĥ2 vector is the
sum of ĝ2 and ĉ2 (the transforms of ĝ1 and ĉ1 re-
spectively). By Parseval’s theorem the sum of the
squared amplitudes of ĉ1 in domain 1 must equal the
sum of the squared amplitudes ĉ2 in domain 2. But :∑

all points

|c1|2 , squared error

and from Fig. 2 it is clear that the correction vector
d̂2 at each point must be less than or at most equal
to ĉ2 in amplitude. Hence the squared error must
decrease or remain constant with each pass through
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the FFT in the algorithm.

Figure 2: The action of the algorithm on a) an ar-
bitrary point in the image plane and b) an arbitrary
point in the diffraction plane. “t1” (“t2”) is the mea-
sured amplitude at the arbitrary image (diffraction)
plane point. After FFT g1 is the vector at point in
“a”. “c1”is correction vector added. “h1”is new esti-
mate. “h1”is then transformed to yield “b”. In “b”d2
is correction vector added to h2 to form new estimate
which then transformed to complete one iteration or
loop of algorithm.

The Squared Error Limit

It is worthwhile to study and understand the action
of the algorithm through circle point figures like those
in Fig. 2. One thing that becomes clear is that for
a finite limit to the squared error to exist, the algo-
rithm must approach or reach a situation where the
correction function (ĉ) is colinear with the estimated

function (hĥ) in both domains 1 and 2 (see Fig. 2).

Thus the estimate (ĥ) and the correction (ĉ) would
have the same phase functions in both domains 1 and
2 at every point. This is a difficult condition to im-
pose on two distinct functions and yet it has been
achieved in every instance where we have forced the
algorithm to fail. The squared error appeared to ap-
proach a finite limit other than zero at the same time
that the phase function of the estimate appeared to
approach a limiting function as well. There may be

some characteristic way that the estimate approaches
this limiting condition. We have not examined this
question closely but we can say that in the trials we
have run, no obvious characteristic stands out. This
is plain in the example of an incorrect function gen-
erated by the algorithm and displayed as Fig. 3.

Sampling Considerations

The only way that the algorithm has been forced to
fail thus far is by inadequate sampling in either of
the two domains. If a continuous function is sam-
pled at a rate which is too “slow”to adequately por-
tray its spectrum, the algorithm fails. At this point,
we would not attempt to set minimum sampling rate
limits. The problem stems from the fact that sam-
pling occurs in both domains and the duration of the
function must be infinite in at least one domain. At
least one of the domains will present the function
in a distorted way. The severity of this effect ap-
pears to vary with the function. It was a surprise
to find that in the case of the “chirp function”(see
Fig. 3) rect(2t) exp(i30πt2), the sampling increment
t = 1/128, was too large. That sampling incre-
ment corresponded to a Shannon-Whittaker sampling
bandwidth containing better than 99% of the func-
tion energy. This has not been the case for every test
function we have run. However, in every instance of
our testing, the algorithm has succeeded in achieving
a valid solution with the square error limit appearing
to be zero when the function sampling was taken at
a sufficiently high rate.

Typical Test Results

Fig. 3 shows the FFT of the function
rect(2t) exp(i30πt2) and the incorrect answer
that the algorithm appeared to limit on. Fig. 3a
compares the amplitudes of the two functions and
Fig. 3b compares the phases. For purposes of illus-
tration, only the results on this family of functions
are given. Aside from this trial, which failed because
of improper sampling, the other results which will be
discussed yielded curves which were valid solutions of
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the phase problem. The history of this test leading
to the results of Fig. 3 is shown in Table 3.

Figure 3: Point plot of a) amplitude and b) phases of
FFT of sampled function rect(2t) exp(i30πt2). The
incorrect solution found by the algorithm is com-
pared to the correct solution. Details of this trial
are recorded in Table 1.

Table 2 shows the trial history of the same func-
tion but this time the sampling increment was halved.
The squared error was recorded only to three decimal
places and went from a normalized value of 0.538 to
0.000 in approximately 65 loops of the algorithm as
shown in Fig. 1. The amplitude of the function found
was of course virtually identical to the correct one.
Except for a constant phase shift and the fact that
the function was complex conjugate to the one used
to create the image, it was virtually perfect. It was
noted previously that functions which, along with
their transforms, have centro-symmetric amplitude
distributions as this class does, can produce valid so-
lution functions which are complex conjugates.

Table 3 shows the history of a solution run

Table 1:

Table 2:

on a problem with slightly incompatible pictures
in the diffraction and image planes. The algo-
rithm was used on the amplitudes of the function
rect(2t) exp(i15πt2). The amplitudes of the FFT of
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this function were modified by suppressing all those
amplitudes less than 1/30th the maximum. Thus a
situation was simulated in which the dynamic range
of the recording medium was in the neighborhood of
30 dB limited by noise at the low end. The results
were very good indeed. The error decreased from
0.639 to 0.003 in 31 loops of the algorithm. The en-
ergy of the function in the two domains is not the
same and the error limits at this value. The phases
of the points in the solution found are quite closely
correct (±2◦) for corresponding amplitudes greater
than 10% the maximum. The phase error becomes
as high as (±10◦) at some points of lesser amplitude.

Table 3:

Perusal of the solution histories indicates that the
progress of the algorithm toward a solution becomes
less rapid as the error decreases. In this respect these
results are not characteristic of all the trials we have
made. Some functions have actually moved toward
zero squared error at a geometric rate with a factor
of around 0.5. R. W. Gerchberg acknowledges the
support of the United States National Institutes of
Health by way of Fellowship NIH (1 F03 GM49953-
01). W.O. Saxton acknowledges the support of the

Science Research Council.
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