Dream beam

I am very happy to announce that was granted en Early Career Research Award by the US Department of Energy, to work on the DREAM beam: Diffraction-limited Radiation Enhancement with Adaptive Mirrors for x-ray coherent beamlines.

Here are some news releases:

They may say I’m a dreamer, but I’m not the only one

Here’s the abstract

DOE x-ray light source facilities such as the APS, LCLS-II, NSLS-II and ALS are undergoing or have recently undergone major upgrades to increase the source brightness to enable groundbreaking science, based on laser-like, high coherent flux. Coherent imaging and diffraction techniques enable scientists to explore smaller timescales with finer spatial and energy resolution, addressing fundamental questions in chemistry, materials science, and biology. However, despite this enormous investment in source optimization, there is still great unleashed potential in the beamline optical systems that can harness and engineer these newly available x-ray beam properties. As advanced optical systems have transformed astronomy, photolithography, and light microscopy, the proposed Diffraction-limited Radiation Enhancement with Adaptive Mirrors (DREAM) project here aims to bring advanced optical system concepts to x-ray beamlines, shaping and steering x-ray beams and engineering their wavefronts to promote newly emerging imaging modes, and enable higher experimental sensitivities. Our approach takes advantage of recent technological developments in the field of x-ray adaptive optics to dynamically shape beams at the nanometer level, unlocking previously unavailable properties and experimental modes.

Advances in modeling, control, and adaptive mirrors, developed in this project work in concert to deliver customized beams, from stabilized point sources, to 3D scanning probes. Machine learning, which is already demonstrated for accelerator electron-beam feedback, will be applied to modeling and in-situ system calibration to simplify the complex interplay between the optical elements. This work develops a framework that can be deployed on any coherent beamline. Further, we propose the integration of beamlines with the experiments to demonstrate dynamic sample illumination for high-throughput data collection, leading ultimately to autonomous experiments. We will develop ways for adaptive optics to engineer the wavefront to give rise to new contrasts and higher sensitivity in experiments by tuning the phase of the light when it interacts with the sample.

Thus, by leveraging advances in x-ray sources, adaptive optics, modeling, and machine learning, the DREAM beam project develops generalizable tools that can be utilized to significantly enrich coherent x- ray applications. By weaving the beamline optics and control into the endstation experimental techniques, this work targets highs-speed experiments for in-operando studies of new micro-electronics, quantum devices or batteries, and it shapes x-ray beams to enrich our understanding of physical phenomenon in materials.

The research plan is the following:

  1. Develop a framework for automated alignment of coherent beamlines: Bring together the latest instrument control software developments and use beamline 12.0.2 of the ALS to demonstrate a successful deployment.
    impact: making the best use possible of beamlines at upgraded light source facilities
  2. Development of novel adaptive optics: Demonstrate that x-ray adaptive optics developed for space applications can be used for light source experiments, and perform the metrology of these devices at APS.
    impact: Extending the capabilities of adaptive optics and make them an essential tool of new x- ray beamline and endstations
  3. Experimental demonstration of dynamic illumination control: Demonstrate that x-ray beam steering can be achieved.
    impact: enabling faster experiments for in-situ/in-operando and multi-modal characterization.
  4. Study of wavefront engineering and exploration of experimental opportunities
    impact: opening the doors to a whole new class of coherent x-ray experiments.